Commonwealth of Kentucky Division for Air Quality

PERMIT APPLICATION SUMMARY FORM

Completed by: Mark Labhart

GENERAL INFORMATION:		
Name:	Duro Designer Company, Inc.	
Address:	1 Duro Way	
	Richwood, KY 41094	
Date application received:	12/14/1999	
SIC Code/SIC description:	2674, Uncoated Paper and Multiwall Bags	
Source ID:	21-015-00086	
Source A.I. #:	175	
Activity ID:	APE20040001	
Permit:	F-07-015	
APPLICATION TYPE/PERMIT ACTIVITY:		
[X] Initial issuance	[] General permit	
[] Permit modification	[X] Conditional major	
Administrative	[] Title V	
Minor	[] Synthetic minor	
Significant	[] Operating	
[] Permit renewal	[X] Construction/operating	
COMPLIANCE SUMMARY:		
[] Source is out of compliance[] Compliance certification signed	[] Compliance schedule included	
APPLICABLE REQUIREMENTS LIST:		
	SPS [X] SIP	
	ESHAPS [] Other	
[] Netted out of PSD/NSR [] No	ot major modification per 401 KAR 51:001, 1(116)(b)	
MISCELLANEOUS:		
[] Acid rain source		
[] Source subject to 112(r)		
[X] Source applied for federally enfo		
[] Source provided terms for altern	1 0	
[] Source subject to a MACT stand		
[] Source requested case-by-case 1		
[] Application proposes new control		
[X] Certified by responsible official		
[X] Diagrams or drawings included		
[] Confidential business informatio	n (CBI) submitted in application	
[] Pollution Prevention Measures		
[X] Area is non-attainment (list poll-	utants): Ozone	

EMISSIONS SUMMARY:

Pollutant	Actual (tpy)	Allowable (tpy)	Potential (tpy)
VOC	36	60	233
Single HAPs			
Glycol Ethers		N/A	4.4
Acrylic Acid		N/A	1.6
Styrene		N/A	0.2
, and the second			
Source wide HAPs	3.5	N/A	6.4

SOURCE DESCRIPTION:

The source manufactures and prints bags from paper and plastic for a variety of customers including retailers, restaurants, and consumers. Currently there are (35) flexographic presses and (2) rotogravure presses utilizing low VOC and low HAP content inks. Potential HAP emissions are less than major source thresholds, but the source wide PTE for VOC is greater than the major source threshold. Actual emissions have historically been lower then the source-wide PTE, therefore Duro has requested a Conditional Major limitation on VOC. There are (2) parts cleaners subject to 401 KAR 59:185, but these are classified as insignificant activities. Other insignificant activities include (1) n.g. fired facility boiler subject to 401 KAR 59:015, (4) Air Make-Up heaters, flexographic plate making equipment, and plastic extrusion equipment.

EMISSIONS AND OPERATING CAPS DESCRIPTIONS:

The permittee shall limit VOC emissions to 60 tpy or less.

OPERATIONAL FLEXIBILITY:

Duro Standard is not restricted as to hours of operation or quantity of product produced while remaining within the caps above.